

Simultaneous Nearest Neighbor Search

Piotr Indyk MIT

Robert Kleinberg Cornell

Sepideh Mahabadi MIT Yang Yuan Cornell

• Dataset of *n* points *P* in a metric space (X, d_X)

- Dataset of *n* points *P* in a metric space (X, d_X)
- A query point comes online *q*

- Dataset of n points P in a metric space (X, d_X)
- A query point comes online q

• Goal:

• Find the nearest data-set point p^*

- Dataset of n points P in a metric space (X, d_X)
- A query point comes online q
- Goal:

6/17/2016

- Find the nearest data-set point p^*
- Do it in sub-linear time

Approximate Nearest Neighbor

- Dataset of n points P in a metric space (X, d_X)
- A query point comes online *q*

- Goal:
 - Find the nearest data-set point p*
 - Do it in sub-linear time
 - Approximate Nearest Neighbor

What if

We have multiple queries

We need the results of the queries to be related.

What if

We have multiple queries

We need the results of the queries to be related.

Example:

- Noisy image
- For each pixel find the true color
- Neighboring pixels have similar color

Simultaneous NN Problem

- Dataset of n points P in a metric space (X, d_X)
- Query comes online and contains
 - k query points $Q = (q_1, ..., q_k)$

- Dataset of n points P in a metric space (X, d_X)
- Query comes online and contains
 - k query points $Q = (q_1, ..., q_k)$
 - A compatibility graph $G = (Q, E_G)$

- Dataset of n points P in a metric space (X, d_X)
- Query comes online and contains
 - k query points $Q = (q_1, ..., q_k)$
 - A compatibility graph $G = (Q, E_G)$

13

- Dataset of n points P in a metric space (X, d_X)
- Query comes online and contains
 - k query points $Q = (q_1, \dots, q_k)$
 - A compatibility graph $G = (Q, E_G)$

- Dataset of n points P in a metric space (X, d_X)
- Query comes online and contains
 - k query points $Q = (q_1, ..., q_k)$
 - A compatibility graph $G = (Q, E_G)$
- Goal is to report $(p_1, ..., p_k)$, $p_i \in P$, that minimizes $\sum_{i=1}^k d_X(q_i, p_i) + \sum_{(q_i, q_j) \in E_G} d_X(p_i, p_j)$

The Generalized SNN

- Dataset of n points P in a metric space (X, d_X)
- Query comes online and contains
 - k query points $Q = (q_1, ..., q_k)$
 - A compatibility graph $G = (Q, E_G)$
- Goal is to report (p_1, \dots, p_k) , $p_i \in P$, that minimizes $\sum_{i=1}^k \kappa_i d_Y(q_i, p_i) + \sum_{(q_i, q_j) \in E_G} \lambda_{i,j} d_X(p_i, p_j)$

INN Algorithm

• For each query point $q_i \in Q$

- For each query point $q_i \in Q$
 - Independently find a (approximate) nearest neighbor $\hat{p_i}$ (Searching step)

- For each query point $q_i \in Q$
 - Independently find a (approximate) nearest neighbor $\hat{p_i}$ (Searching step)
- Replace the label set P with the reduced set $\widehat{P} = \{\widehat{p_1}, \dots, \widehat{p_k}\}$ (Pruning step)

- For each query point $q_i \in Q$
 - Independently find a (approximate) nearest neighbor $\hat{p_i}$ (Searching step)
- Replace the label set P with the reduced set $\widehat{P} = \{\widehat{p_1}, \dots, \widehat{p_k}\}$ (Pruning step)
- Solve the problem for \hat{P}

INN Algorithm

- For each query point $q_i \in Q$
 - Independently find a (approximate) nearest neighbor $\hat{p_i}$ (Searching step)
- Replace the label set P with the reduced set $\widehat{P} = \{\widehat{p_1}, \dots, \widehat{p_k}\}$ (Pruning step)
- Solve the problem for \hat{P}

 \blacktriangleright Reduces the size of labels from n down to k

- For each query point $q_i \in Q$
 - Independently find a (approximate) nearest neighbor $\hat{p_i}$ (Searching step)
- Replace the label set P with the reduced set $\widehat{P} = \{\widehat{p_1}, \dots, \widehat{p_k}\}$ (Pruning step)
- Solve the problem for \widehat{P}
- \blacktriangleright Reduces the size of labels from n down to k
- \succ The optimal value increases by a factor α
 - pruning gap

INN Algorithm

- For each query point $q_i \in Q$
 - Independently find a (approximate) nearest neighbor \hat{p}_i (Searching step)
- Replace the label set P with the reduced set $\widehat{P} = \{\widehat{p_1}, \dots, \widehat{p_k}\}$ (Pruning step)
- Solve the problem for \hat{P}
- \blacktriangleright Reduces the size of labels from n down to k
- \succ The optimal value increases by a factor α

> pruning gap

 \triangleright Any metric labeling β -approximate algorithm can be used on the reduced set, giving us $(\alpha \cdot \beta)$ -approximate algorithm. 6/17/2016

 $\widehat{p_2}$

• Prove bounds for the pruning gap

• Prove bounds for the pruning gap

• $\alpha = O\left(\frac{\log k}{\log \log k}\right)$

- Prove bounds for the pruning gap
 - $\alpha = O\left(\frac{\log k}{\log \log k}\right)$ • $\alpha = \Omega\left(\sqrt{\log k}\right)$

- Prove bounds for the pruning gap
 - $\alpha = O\left(\frac{\log k}{\log \log k}\right)$
 - $\alpha = \Omega\left(\sqrt{\log k}\right)$
- For *r*-sparse graph: $\alpha = O(r)$

- Prove bounds for the pruning gap
 - $\alpha = O\left(\frac{\log k}{\log \log k}\right)$
 - $\alpha = \Omega\left(\sqrt{\log k}\right)$
- For *r*-sparse graph: $\alpha = O(r)$
 - Graphs with pseudo-arboricity r: each edge can be mapped to a vertex such that at most r edges are mapped to any vertex

- Prove bounds for the pruning gap
 - $\alpha = O\left(\frac{\log k}{\log \log k}\right)$
 - $\alpha = \Omega\left(\sqrt{\log k}\right)$
- For *r*-sparse graph: $\alpha = O(r)$
 - Graphs with pseudo-arboricity r: each edge can be mapped to a vertex such that at most r edges are mapped to any vertex
 - Would mean constant approximation factor for trees, grids, planar graphs, ..., and in particular O(r)-approximation for r-degree graphs

- Prove bounds for the pruning gap
 - $\boldsymbol{\alpha} = \boldsymbol{O}\left(\frac{\log k}{\log \log k}\right)$
 - $\alpha = \Omega\left(\sqrt{\log k}\right)$
- For *r*-sparse graph: $\alpha = O(r)$
 - Graphs with pseudo-arboricity r: each edge can be mapped to a vertex such that at most r edges are mapped to any vertex
 - Would mean constant approximation factor for trees, grids, planar graphs, ..., and in particular O(r)-approximation for r-degree graphs
- α is very close to one in experiments

- Prove bounds for the pruning gap
- $\alpha = O\left(\frac{\log k}{\log \log k}\right)$ • $\alpha = \Omega\left(\sqrt{\log k}\right)$
 - For *r*-sparse graph: $\alpha = O(r)$
 - Graphs with pseudo-arboricity r: each edge can be mapped to a vertex such that at most r edges are mapped to any vertex
 - Would mean constant approximation factor for trees, grids, planar graphs, ..., and in particular O(r)-approximation for r-degree graphs
- $\rightarrow \cdot \alpha$ is very close to one in experiments

Overview of the proof for

 $\alpha = O\left(\frac{\log k}{\log \log k}\right)$

O-Extension Problem [Kar98]

O-Extension Problem [Kar98]

- The input:
 - a graph H(V, E)

O-Extension Problem [Kar98]

- The input:
 - a graph H(V, E)
 - a weight function w(e)

O-Extension Problem [Kar98]

- The input:
 - a graph H(V, E)
 - a weight function w(e)
 - a set of terminals $T \subset V$

O-Extension Problem [Kar98]

- The input:
 - a graph H(V, E)
 - a weight function w(e)
 - a set of terminals $T \subset V$
- The goal: find a mapping $f: V \to T$ s.t.
 - Each terminal is mapped to itself
 - Minimize $\sum_{(u,v)\in E} w(u,v)d(f(u),f(v))$

 $\mathsf{Cost} = 1 \cdot d(t_1, t_2)$

- Upper bounds:
 - E.g. $O(\frac{\log |T|}{\log \log |T|})$ approximation algorithm [CKR05]

- Upper bounds:
 - E.g. $O(\frac{\log |T|}{\log \log |T|})$ approximation algorithm [CKR05]
 - consider the metric relaxation of the LP for the problem
 - Solve LP
 - Round the solution

- Upper bounds:
 - E.g. $O(\frac{\log |T|}{\log \log |T|})$ approximation algorithm [CKR05]
 - consider the metric relaxation of the LP for the problem
 - Solve LP
 - Round the solution
- $\Omega(\sqrt{\log |T|})$ integrality gap [FHRT03]

- Upper bounds:
 - E.g. $O(\frac{\log |T|}{\log \log |T|})$ approximation algorithm [CKR05]
 - consider the metric relaxation of the LP for the problem
 - Solve LP
 - Round the solution
- $\Omega(\sqrt{\log |T|})$ integrality gap [FHRT03]
- Efficient if the number of terminals is low

- SNN: (*P*, *Q*, *G*)
- **0-Extension:** (*V*, *H*, *w*, *T*)

- SNN: (*P*, *Q*, *G*)
- **0-Extension:** (*V*, *H*, *w*, *T*)
- 1. 0-extension can be solved using generalized SNN
 - Q = V, P = T, $\lambda_{i,j} = w(i,j)$, $\kappa_i = \infty$ if $q_i \in T$ and 0 O.w.

- SNN: (*P*, *Q*, *G*)
- **0-Extension:** (*V*, *H*, *w*, *T*)
- 1. 0-extension can be solved using generalized SNN
 - Q = V, P = T, $\lambda_{i,j} = w(i,j)$, $\kappa_i = \infty$ if $q_i \in T$ and 0 O.w.
- 2. SNN can be solved using 0-extension in a black-box manner
 - Set: T = P, $V = Q \cup P$, w = 1, $H = G \cup \{(q_i, \hat{p_i})|i\}$

- SNN: (*P*, *Q*, *G*)
- **0-Extension:** (*V*, *H*, *w*, *T*)
- 1. 0-extension can be solved using generalized SNN
 - Q = V, P = T, $\lambda_{i,j} = w(i,j)$, $\kappa_i = \infty$ if $q_i \in T$ and 0 O.w.
- 2. SNN can be solved using 0-extension in a black-box manner
 - Set: T = P, $V = Q \cup P$, w = 1, $H = G \cup \{(q_i, \widehat{p_i})|i\}$
 - giving $O(\frac{\log n}{\log \log n})$ approximation algorithm

- SNN: (*P*, *Q*, *G*)
- **0-Extension:** (*V*, *H*, *w*, *T*)
- 1. 0-extension can be solved using generalized SNN
 - Q = V, P = T, $\lambda_{i,j} = w(i,j)$, $\kappa_i = \infty$ if $q_i \in T$ and 0 O.w.
- 2. SNN can be solved using 0-extension in a black-box manner
 - Set: T = P, $V = Q \cup P$, w = 1, $H = G \cup \{(q_i, \hat{p_i})|i\}$
 - giving $O(\frac{\log n}{\log \log n})$ approximation algorithm
- 3. Improve to depend only on k not n

- SNN: (*P*, *Q*, *G*)
- **0-Extension:** (*V*, *H*, *w*, *T*)
- 1. 0-extension can be solved using generalized SNN
 - Q = V, P = T, $\lambda_{i,j} = w(i,j)$, $\kappa_i = \infty$ if $q_i \in T$ and 0.0.w.
- 2. SNN can be solved using 0-extension in a black-box manner
 - Set: T = P, $V = Q \cup P$, w = 1, $H = G \cup \{(q_i, \widehat{p_i})|i\}$
 - giving $O(\frac{\log n}{\log \log n})$ approximation algorithm
- 3. Improve to depend only on *k* not n
 - Analyzing INN using 0-extension in a "grey-box" manner

- SNN: (*P*, *Q*, *G*)
- **0-Extension:** (*V*, *H*, *w*, *T*)
- 1. 0-extension can be solved using generalized SNN
 - Q = V, P = T, $\lambda_{i,j} = w(i,j)$, $\kappa_i = \infty$ if $q_i \in T$ and 0.0.w.
- 2. SNN can be solved using 0-extension in a black-box manner
 - Set: T = P, $V = Q \cup P$, w = 1, $H = G \cup \{(q_i, \hat{p_i})|i\}$
 - giving $O(\frac{\log n}{\log \log n})$ approximation algorithm
- 3. Improve to depend only on *k* not n
 - Analyzing INN using 0-extension in a "grey-box" manner
 - Using subtle properties of existing algorithms for 0-extension

- SNN: (*P*, *Q*, *G*)
- **0-Extension:** (*V*, *H*, *w*, *T*)
- 1. 0-extension can be solved using generalized SNN
 - Q = V, P = T, $\lambda_{i,j} = w(i,j)$, $\kappa_i = \infty$ if $q_i \in T$ and 0.0.w.
- 2. SNN can be solved using 0-extension in a black-box manner
 - Set: T = P, $V = Q \cup P$, w = 1, $H = G \cup \{(q_i, \hat{p_i})|i\}$
 - giving $O(\frac{\log n}{\log \log n})$ approximation algorithm
- 3. Improve to depend only on k not n
 - Analyzing INN using 0-extension in a "grey-box" manner
 - Using subtle properties of existing algorithms for 0-extension
 - Leads to an $O(\frac{\log k}{\log \log k})$ approximation

Experiments

De-noising problem

- Each pixel is a query point
- Data set *P* : all [256]³ possible colors
- Graph: the grid

De-noising problem

- Each pixel is a query point
- Data set *P* : all [256]³ possible colors
- Graph: the grid

Algorithm

• Only consider the colors that appear in the noisy image

De-noising problem

- Each pixel is a query point
- Data set *P* : all [256]³ possible colors
- Graph: the grid

Algorithm

- Only consider the colors that appear in the noisy image
- **Result:** empirical pruning gap α is very close to 1, at most 1.024

6/17/2016

Image

Half-Noisy

De-noised

6/17/2016

• Summary of Results

- Summary of Results
 - Presented Independent NN pruning

- Summary of Results
 - Presented Independent NN pruning
 - Induces an extra factor α

- Summary of Results
 - Presented Independent NN pruning
 - Induces an extra factor α

•
$$\alpha = O(\frac{\log k}{\log \log k})$$
, $\alpha = \Omega(\sqrt{\log k})$

- Summary of Results
 - Presented Independent NN pruning
 - Induces an extra factor α

•
$$\alpha = O(\frac{\log k}{\log \log k})$$
, $\alpha = \Omega(\sqrt{\log k})$

• $\alpha = O(1)$ for sparse graphs that are mostly used in applications

- Summary of Results
 - Presented Independent NN pruning
 - Induces an extra factor α

•
$$\alpha = O(\frac{\log k}{\log \log k})$$
, $\alpha = \Omega(\sqrt{\log k})$

- $\alpha = O(1)$ for sparse graphs that are mostly used in applications
- $\alpha \approx 1$ in the denoising experiments

- Summary of Results
 - Presented Independent NN pruning
 - Induces an extra factor α

•
$$\alpha = O(\frac{\log k}{\log \log k})$$
, $\alpha = \Omega(\sqrt{\log k})$

- $\alpha = O(1)$ for sparse graphs that are mostly used in applications
- $\alpha \approx 1$ in the denoising experiments
- Open Problems

- Summary of Results
 - Presented Independent NN pruning
 - Induces an extra factor α

•
$$\alpha = O(\frac{\log k}{\log \log k})$$
, $\alpha = \Omega(\sqrt{\log k})$

- $\alpha = O(1)$ for sparse graphs that are mostly used in applications
- $\alpha \approx 1$ in the denoising experiments

Open Problems

• Prove tighter bounds for α

• Summary of Results

- Presented Independent NN pruning
- Induces an extra factor α

•
$$\alpha = O(\frac{\log k}{\log \log k})$$
, $\alpha = \Omega(\sqrt{\log k})$

- $\alpha = O(1)$ for sparse graphs that are mostly used in applications
- $\alpha \approx 1$ in the denoising experiments

Open Problems

- Prove tighter bounds for α
- Get better guarantees using different algorithm, i.e., instead of picking the closest point pick a few points.

• Summary of Results

- Presented Independent NN pruning
- Induces an extra factor α

•
$$\alpha = O(\frac{\log k}{\log \log k})$$
, $\alpha = \Omega(\sqrt{\log k})$

- $\alpha = O(1)$ for sparse graphs that are mostly used in applications
- $\alpha \approx 1$ in the denoising experiments

Open Problems

- Prove tighter bounds for α
- Get better guarantees using different algorithm, i.e., instead of picking the closest point pick a few points.
- Solve the general case of the problem, i.e.,
 - where the metrics $d_Y(q_i, p_i)$ and $d_X(p_i, p_j)$ are different
 - There are weights

• Summary of Results

- Presented Independent NN pruning
- Induces an extra factor α

•
$$\alpha = O(\frac{\log k}{\log \log k})$$
, $\alpha = \Omega(\sqrt{\log k})$

- $\alpha = O(1)$ for sparse graphs that are mostly used in applications
- $\alpha \approx 1$ in the denoising experiments

Open Problems

- Prove tighter bounds for α
- Get better guarantees using different algorithm, i.e., instead of picking the closest point pick a few points.
- Solve the general case of the problem, i.e.,
 - where the metrics $d_X(q_i, p_i)$ and $d_Y(p_i, p_j)$ are different
 - There are weights

Thank You!