TCSAIL

Simultaneous Nearest
Neighbor Search

Piotr Indyk Robert Kleinberg
MIT Cornell
Sepideh Mahabadi Yang Yuan

MIT Cornell



Near‘eST Ne|9hb0r‘ MITCSAIL

* Dataset of n points P in a metric space (X, dy)

6/17/2016 :



Nearest Neighbor

* Dataset of n points P in a metric space (X, dy)

* A query point comes online g o .

6/17/2016 3



MITCSAII

Nearest Neighbor

* Dataset of n points P in a metric space (X, dy)

* A query point comes online g o .

e Goal: g
* Find the nearest data-set point p*

6/17/2016 4



Nearest Neighbor
* Dataset of n points P in a metric space (X, dy)
* A query point comes online g o .
o - .q o
* Goal: b

* Find the nearest data-set point p”
* Do it in sub-linear time
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Approximate Nearest Neighbor

* Dataset of n points P in a metric space (X, dy)

* A query point comes online g 0 .

* Goal:
* Find the nearest data-set point p”
e Do it in sub-linear time
* Approximate Nearest Neighbor
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We have multiple queries

We need the results of the queries to be related.
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What if MiTCSAIL

We have multiple queries
We need the results of the queries to be related.

Example:

* Noisy image

* For each pixel find the true color Illil-llll-

* Neighboring pixels have similar color
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* Dataset of n points P in a metric space (X, dy)
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The SNN problem e,
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* Dataset of n points P in a metric space (X, dy)

* Query comes online and contains e .,

* k query points Q = (g1, -, qx) e e

* A compatibility graph ¢ = (Q, E;)
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The SNN problem S,

(Felzenszwalb'1D)

* Dataset of n points P in a metric space (X, dy)

* Query comes online and contains e ...
* k query points Q0 = (g4, ..., qx) S /\-
* A compatibility graph ¢ = (Q, E;)

AT Tr I
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The SNN problem

(Felzenszwalb'1b)

* Dataset of n points P in a metric space (X, dy)

* Query comes online and contains e

* k query points Q0 = (g4, ..., qx) o Jo )
* A compatibility graph ¢ = (Q, E;)

* Goalis toreport (pq, ..., ), p; € P, that minimizes
k
2i=19x(qi, Pi) + 2(q, g )ep, AxPu Pj)
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The Generalized SNN

* Dataset of n points P in a metric space (X, dy)

* Query comes online and contains e

* k query points Q0 = (g4, ..., qx) o Jo o
* A compatibility graph ¢ = (Q, E;)

* Goalis toreport (pq, ..., ), p; € P, that minimizes
k
2i=1 Kidy (qu Pi) + X (q,q)epc 4119 Pi D))
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INN Algorithm
* For each query point g; € Q
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INN Algorithm
* For each query point g; € Q
* Independently find a (approximate) nearest neighbor p;
(Searching step)
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Independent NN Algorithm* "

INN Algorithm
* For each query point g; € Q
* Independently find a (approximate) nearest neighbor p;
(Searching step)

* Replace the label set P with the reduced set P = {py, ..., D1}
(Pruning step)

—
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INN Algorithm
* For each query point g; € Q
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6/17/2016 21



"

Independent NN Algorithm™ "

INN Algorithm
* For each query point g; € Q
* Independently find a (approximate) nearest neighbor p;
(Searching step)

* Replace the label set P with the reduced set P = {py, ..., D1}
(Pruning step)

e Solve the problem for P 7
‘CIZ

o
> Reduces the size of labels from n down to k 1’ a = o
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INN Algorithm
* For each query point g; € Q
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Independent NN Algorithm'

INN Algorithm
* For each query point g; € Q
* Independently find a (approximate) nearest neighbor p;
(Searching step)

* Replace the label set P with the reduced set P = {py, ..., D1}
(Pruning step)

e Solve the problem for P 7
.CIZ

()
> Reduces the size of labels from n down to k 1’ q = o

» The optimal value increases by a factor a
> pruning gap

» Any metric labeling f-approximate algorithm can be used on the

reduced set, giving us (a - )-approximate algorithm.
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Results

* Prove bounds for the pruning gap
. . log k
a=0 (log log k)
e o = ﬂ(,/logk)

* For r-sparse graph: a = O(r)
* Graphs with pseudo-arboricity r: each edge can be mapped

to a vertex such that at most r edges are mapped to any
vertex
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Results

* Prove bounds for the pruning gap

. . log k
Z=1 (log logk)
c a= Q(w/logk)

* For r-sparse graph: a = O(r)
* Graphs with pseudo-arboricity r: each edge can be mapped

to a vertex such that at most r edges are mapped to any
vertex

* Would mean constant approximation factor for trees, grids,
planar graphs, ..., and in particular O (r)-approximation for 7-
degree graphs
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Results

* Prove bounds for the pruning gap

. . log k
Z=1 (log log k)
c a= 1) (Jlogk)

* For r-sparse graph: a = 0(r)

* Graphs with pseudo-arboricity r: each edge can be mapped
to a vertex such that at most r edges are mapped to any
vertex

* Would mean constant approximation factor for trees, grids,
planar graphs, ..., and in particular O (r)-approximation for 7-
degree graphs

* a is very close to one in experiments
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Results

* Prove bounds for the pruning gap

-. azo(logk)

loglog k

. a-a(/iozk)

* For r-sparse graph: a« = O(r)

* Graphs with pseudo-arboricity r: each edge can be mapped
to a vertex such that at most r edges are mapped to any
vertex

* Would mean constant approximation factor for trees, grids,

planar graphs, ..., and in particular O (r)-approximation for 7-
degree graphs

m) - « is very close to one in experiments
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Overview of the proof for

0 logk
“= loglog k

6/17/2016 Sepideh Mahabadi
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O-Extension Problem [Kar98] e

* The input:
 agraph H(V,E)
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* The input:
 agraph H(V,E)
* a weight function w(e)
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* The input:
 agraph H(V,E)
* a weight function w(e)
e asetofterminalsT c V
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0-Extension Problem [Kar98] <"

* The input:
* agraph H(V,E)
* a weight function w(e)
e asetofterminalsT c IV

* The goal: find a mapping f:V = T s.t.

* Each terminal is mapped to itself
* Minimize ., ,yep W, v)d(f (w), f (v))

ST et
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O-Extension Problem

Prior work: [CKRO5, FHRT03, AFHKTTO04, LNO4]
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* Upper bounds:

. log |T|
E.g. 0(log log |T|

e consider the metric relaxation of the LP for the
problem

e Solve LP
* Round the solution
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O-Extension Problem e

Prior work: [CKRO5, FHRT03, AFHKTTO04, LNO4]

* Upper bounds:

. log |T|
E.g. 0(log log |T|

e consider the metric relaxation of the LP for the
problem

e Solve LP
* Round the solution

. Q(\/log |T|) integrality gap [FHRTO3]

e Efficient if the number of terminals is low

) approximation algorithm [CKRO5]
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Connection to SNN

* SNN: (P, Q,G)
* 0-Extension: (V,H,w,T)

1. O-extension can be solved using generalized SNN
'Q=V,P=T,)li,j=W(l,j),Ki=00lfqiETaTld00.W.
2. SNN can be solved using 0-extension in a black-box

Mmanner
°Set'T—P V=QUP w=1,H=GUVU{(q;,p;)li}

 giving O( ) approximation algorithm

log log n

3. Improve to depend only on k not n
* Analyzing INN using 0-extension in a “grey-box” manner
* Using subtle properties of existing algorithms for 0-extension

* Leads to an 0( ) approximation

log k
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Experimental Results

* De-noising problem
* Each pixel is a query point
* Data set P : all [256]° possible colors
* Graph: the grid
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Experimental Results

* De-noising problem
* Each pixel is a query point
* Data set P : all [256]° possible colors
* Graph: the grid

 Algorithm
* Only consider the colors that appear in the noisy image

e Result: empirical pruning gap « is very close to 1,
at most 1.024



Experimental Results

MITCSAIL

Image Noisy Image
De-noised using all colors De-noised using noisy image colors
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Experimental Results

MITCSAIL

Half-Noisy De-noised
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