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Approximate Nearest Neighbor

• Dataset of 𝑛 points 𝑃 in a metric space (𝑋, 𝑑𝑋)

• A query point comes online 𝑞

• Goal: 
• Find the nearest data-set point 𝑝∗

• Do it in sub-linear time

• Approximate Nearest Neighbor
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What if

We have multiple queries

We need the results of the queries to be related.
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What if

We have multiple queries

We need the results of the queries to be related.

Example:

• Noisy image

• For each pixel find the true color

• Neighboring pixels have similar color
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Simultaneous NN Problem
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• 𝑘 query points 𝑄 = (𝑞1, … , 𝑞𝑘)

• A compatibility graph 𝐺 = 𝑄, 𝐸𝐺

• Goal is to report (𝑝1, … , 𝑝𝑘) , 𝑝𝑖 ∈ 𝑃 , that minimizes

 𝒊=𝟏
𝒌 𝒅𝑿(𝒒𝒊, 𝒑𝒊) +  

𝒒𝒊,𝒒𝒋 ∈𝑬𝑮
𝒅𝑿(𝒑𝒊, 𝒑𝒋)
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The Generalized SNN

• Dataset of 𝑛 points 𝑃 in a metric space (𝑋, 𝑑𝑋)

• Query comes online and contains
• 𝑘 query points 𝑄 = (𝑞1, … , 𝑞𝑘)

• A compatibility graph 𝐺 = 𝑄, 𝐸𝐺

• Goal is to report (𝑝1, … , 𝑝𝑘) , 𝑝𝑖 ∈ 𝑃 , that minimizes

 𝒊=𝟏
𝒌 𝜿𝒊𝑑𝒀(𝒒𝒊, 𝒑𝒊) +  

𝒒𝒊,𝒒𝒋 ∈𝑬𝑮
𝝀𝒊,𝒋𝒅𝑿(𝒑𝒊, 𝒑𝒋)
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Independent NN Algorithm
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Independent NN Algorithm

INN Algorithm

• For each query point 𝑞𝑖 ∈ 𝑄

• Independently find a (approximate) nearest neighbor  𝒑𝒊
(Searching step)
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INN Algorithm
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(Searching step)

• Replace the label set 𝑃 with the reduced set  𝑷 = { 𝒑𝟏, … ,  𝒑𝒌}
(Pruning step)

• Solve the problem for  𝑃

Reduces the size of labels from 𝑛 down to 𝑘

 The optimal value increases by a factor 𝜶

 pruning gap

 Any metric labeling 𝛽-approximate algorithm can be used on the 
reduced set , giving us (𝛼 ⋅ 𝛽)-approximate algorithm.
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Overview of the proof for 

𝜶 = 𝑶
𝐥𝐨𝐠𝒌

𝐥𝐨𝐠 𝐥𝐨𝐠 𝒌
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0-Extension Problem [Kar98]
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• The input:
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0-Extension Problem [Kar98]

• The input:
• a graph 𝐻 𝑉, 𝐸

• a weight function 𝑤 𝑒

• a set of terminals 𝑇 ⊂ 𝑉

• The goal: find a mapping 𝑓: 𝑉 → 𝑇 s.t.
• Each terminal is mapped to itself 

• Minimize  𝑢,𝑣 ∈𝐸𝑤 𝑢, 𝑣 𝑑(𝑓 𝑢 , 𝑓 𝑣 )
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0-Extension Problem

Prior work: [CKR05, FHRT03, AFHKTT04, LN04]
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0-Extension Problem

Prior work: [CKR05, FHRT03, AFHKTT04, LN04]

• Upper bounds:

• E.g. 𝑂(
log |𝑇|

log log |𝑇|
) approximation algorithm [CKR05] 
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0-Extension Problem

Prior work: [CKR05, FHRT03, AFHKTT04, LN04]

• Upper bounds:

• E.g. 𝑂(
log |𝑇|

log log |𝑇|
) approximation algorithm [CKR05] 

• consider the metric relaxation of the LP for the 
problem

• Solve LP

• Round the solution

• Ω( log |𝑇|) integrality gap [FHRT03]

• Efficient if the number of terminals is low
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Connection to SNN 
• SNN: (𝑷, 𝑸, 𝑮)
• 0-Extension: (𝑽,𝑯,𝒘, 𝑻)
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Connection to SNN 
• SNN: (𝑷, 𝑸, 𝑮)
• 0-Extension: (𝑽,𝑯,𝒘, 𝑻)
1. 0-extension can be solved using generalized SNN

• 𝑄 = 𝑉 , 𝑃 = 𝑇 , 𝜆𝑖,𝑗 = 𝑤(𝑖, 𝑗) , 𝜅𝑖 = ∞ 𝑖𝑓 𝑞𝑖 ∈ 𝑇 𝑎𝑛𝑑 0 𝑂.𝑤.
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2. SNN can be solved using 0-extension in a black-box 
manner
• Set: 𝑇 = 𝑃 , 𝑉 = 𝑄 ∪ 𝑃 , 𝑤 = 1 , 𝐻 = 𝐺 ∪ 𝑞𝑖 ,  𝑝𝑖 𝑖}

• giving 𝑶(
𝒍𝒐𝒈 𝒏

𝒍𝒐𝒈 𝒍𝒐𝒈 𝒏
) approximation algorithm 

3. Improve to depend only on 𝒌 not n
• Analyzing INN using 0-extension in a “grey-box” manner

• Using subtle properties of existing algorithms for 0-extension

• Leads to an 𝑶(
𝒍𝒐𝒈 𝒌

𝒍𝒐𝒈 𝒍𝒐𝒈 𝒌
) approximation
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Experimental Results

• De-noising problem
• Each pixel is a query point
• Data set 𝑃 : all 256 3 possible colors
• Graph: the grid 

• Algorithm
• Only consider the colors that appear in the noisy image

• Result: empirical pruning gap 𝛼 is very close to 1,
at most 1.024
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• Presented Independent NN pruning 

• Induces an extra factor 𝛼

• 𝛼 = 𝑂(
log 𝑘

log log 𝑘
) , 𝛼 = Ω( log 𝑘)

• 𝛼 = 𝑂(1) for sparse graphs that are mostly used in applications

• 𝛼 ≈ 1 in the denoising experiments

• Open Problems

• Prove tighter bounds for 𝛼

• Get better guarantees using different algorithm, i.e., instead of picking the 
closest point pick a few points.

• Solve the general case of the problem, i.e., 

• where the metrics 𝑑𝑋(𝑞𝑖 , 𝑝𝑖) and 𝑑𝑌(𝑝𝑖 , 𝑝𝑗) are different

• There are weights 
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